Phosphorous fertilization in southern highbush blueberry

Gerardo H. Nunez Horticultural Sciences Department University of Florida

UNIVERSITY of FLORIDA WORTICULTURAL

Plants use three strategies to take up P

Phosphorus (P) is highly immobile in the soil

We used a hydroponic experiment to investigate P uptake strategies

Plant material

- 'Colossus' SHB
- 'Farthing' SHB
- 'Keecrisp' SHB
- 'Sentinel' SHB

Data collection

- Root growth and exudation
- Leaf symptoms

All varieties responded to P deficiency by growing more fine roots

Plants responded to P deficiency by exuding enzymes and other organic molecules

Increase solubility of P-containing minerals

All varieties responded to P deficiency by growing more fine roots

Plants responded to P deficiency by exuding enzymes and other organic molecules

P deficiency can have quiet symptoms

Mature leaves develop symptoms first

P is remobilized to young leaves to maintain growth

P deficiency affects growth only in some varieties

Less growth. Higher root:shoot ratio

P deficiency can have quiet symptoms

Mature leaves develop symptoms first

P is remobilized to young leaves to maintain growth

P deficiency affects growth only in some varieties

Maintain growth. Same root:shoot ratio

SHB use two strategies to take up P

We investigated P deficiency responses in a field experiment

- 'Sentinel' and 'Optimus' SHB
- Five P rates
 - 0 lb/A
 - 15 lb/A
 - 30 lb/A
 - 45 lb/A
 - 60 lb/A

14

We investigated P deficiency responses in a field experiment

- 'Sentinel' and 'Optimus' SHB
- Five P rates
 - 0 lb/A
 - 15 lb/A
 - 30 lb/A
 - 45 lb/A 1
- 70 lb P₂O₅ / A 105 lb P₂O₅ / A

 $0 \text{ lb } P_2 O_5 / A$

 $35 \text{ lb P}_2\text{O}_5 / \text{A}$

• 60 lb/A 140 lb P₂O₅ / A

Field conditions at planting

Soil properties	Average \pm S.D. (n = 8)
рН	6.05 ± 0.19
Cation exchange capacity (meq/L)	5.08 ± 0.61
Organic matter (%)	0.63 ± 0.08
M3 Phosphorus (mg/Kg)	157.75 <u>+</u> 21.46

Very high P concentration

Plant growth was affected in 'Optimus' but not in 'Sentinel'

<u>P fertilization (lb/A)</u> → 0 → 15 → 30 → 45 → 60

Leaf P concentrations were affected when plants were small

P fertilization did not affect yield

In summary:

- Blueberry plants forage phosphorus by:
 - Growing more fine roots
 - Releasing enzymes and other organic molecules in the soil
- There are varietal differences.

0.3

0.2

'Optimus

A.

eld (kg.plant⁻¹)

Year 1

In summary:

- Phosphorus deficiency:
 - Is easier to detect in older leaves •
 - Appears as reddening in older leaves ٠
 - Can affect plant growth, but not yield •

Ongoing work

- Field \rightarrow Third year harvest scheduled for Spring 2025
- Nursery \rightarrow P deficiency for faster rooting

Ongoing work

- Field \rightarrow Third year harvest scheduled for Spring 2025
- Nursery \rightarrow P deficiency for faster rooting

Collaborators

FDACS Office of Agricultural Water Policy. Contract number #28710

Funding

Phosphorus fertilization in southern highbush blueberry

Gerardo H. Nunez g.nunez@ufl.edu @GNunezUF Y

Marlon Retana-Cordero

Dylan Kovach