Best practices for grafting southern highbush blueberries

UF IFAS

UNIVERSITY of FLORIDA

Valent ina Goles V. Horticultural Sciences Department

Why are rootstocks not used in blueberry as they are in many perennial fruit crops?

Benefits of sparkleberry rootstocks:

- \succ Increase yield without reducing fruit quality in low input systems (Casamali et al., 2016; Heller et al., 2023)
- > Tree-likegrowth habit
- \succ Increase tolerance to bacterial leaf 2020)
- > Reduce the need for pine bark (Casamali et al., 2016; Darnell et al., 2019)
- > Increase plant longevity

Grafted blueberries:

- \succ There is little information on how to produce grafted blueberry nursery plants
- \succ Grafting adds to the cost of nursery plants
- The multi-cane plant structure of blueberry does not lend itselfto grafting

scorch (Xylella fastidiosa) (Darnell et al.,

V. arboreum propagation challenges:

- > V. arboreum has very low rooting successfrom softwood cuttings (Li et al., 2021)
- \succ Rooting percentage is not affected by application of IBA (Bowerman et al.,2013)
- Limited grafting success \succ

Plant material June

\gg Fifteen genotypes:

- \gg 'Sentinel' SHB
- ≫ Sparkleberry
- \gg 12F1hybrids
- $\gg BC1$

Propagation from cuttings

Objective:

 \gg Assesspropagation successfrom soft wood cuttings of sparkleberry and hybrid rootstocks

Hypothesis:

 \gg Softwood cuttings of hybrid rootstocks exhibit higher rooting successthan softwood cuttings of sparkleberry.

Rooting success

Root length and Leafretention

Callus

Callus + Roots

Roots

Photos: Valentina Goles

Timeline

Activity	Days												
	0	10	20	30	40	50	60	70	80	90	100	110	
Collect & stick								0					
Harvest & root scanning													

Rooting successJune

➢ Root length with Rhizovision software

Leaf retention with ImageJ software

Photos: Valentina Goles 10

Rooting successAugust

Johtma	toriol

Time of grafting	Scions	Rootstocks					
February		FL 12 -616					
March	'Albus'	FL 21-1137					
		FL 21-1142					
September	'Sentinel'	FL 21-1141					
November	Sentiner	BC1					
		Sparkleberry					

Grafttiming

Objectives:

- Assessgraft compatibility of SHB with sparkleberry, SHB x sparkleberry hybrid rootstocks.
- >> Identify the optimal seasonaltiming to produce grafted blueberry liners.

Grafting technique

Timeline

Activity		Weeks														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15-25	26
Grafting											0					
Bud Development																
Pruning																
Transplant																

Stage 5

Scion closest to the crown grow faster

Scion closestto the crown grow faster

p-values indicate the level of statistical significance based on a t-test, with $\,p\leq 0.05$

Bud development scale

Stage 1

Stage 2

Stage 3

Stage 4

Stage 6

Stage 7

Stage 8

p-values indicate the level of statistical significance based on a t-test, with $p \le 0.05$

Scion closestto the crown grow faster

Scionlength Albus - February

Scionlength Sentinel - February

Different letters indicates significant differences based on a t-test at the 5% significance level

Different letters indicates significant differences based on an LSD-test at the 5%

significance level

Acknowledgements:

- ➤ Dr. Jeffrey Williamson
- > Dr. Gerardo Nunez
- ≻ Tim Logan

Valentina Goles V. zv.golesvarela@ufl.edu linkedin.com/in/valentinagoles

Florida Department of Agriculture and Consumer Services

