

Plant Pathology Update Fungicide Resistance

2024 FBGA Summer Grower Meetings

Philip F. Harmon, Ph.D. Professor and Extension Specialist UF/IFAS Plant Pathology Department

E Print and the print of the pr

Today's topics to review

- Common blueberry diseases in Florida
 - Plant disease sample report
- Emerging disease issues
 - Gloeocercospora leaf spot
 - Fungicide resistance in anthracnose
- Fungicide resistance review
- FBGA Research Priorities Committee
 - Research Priorities list—input sought

The second state and the second state of the second state of the second state of the

PDC Blueberry Data

Variety	No.	Variety	No.	Variety	No.
311	2	GeorgiaDawn	10	Patricia	4
12-279	7	Indigocrisp	6	Preston	10
17-142	20	Jewels	1	Rabbiteye	3
Abundance	5	KeeCrisp	24	SanJoaquin	3
Albus	3	Kestrel	10	Sentinel	31
Arcadia	59	Kira	2	Stellar	13
Avanti	48	Legacy	15	Suziblue	16
Chickadee	4	Mageia	3	SweetCrisp	5
Collosus	8	Meadowlark	6	Vireo	8
Emerald	17	Oneal	7	Winterbelle	7
Farthing	78	Optimus	24	WinterSweet	4

PDC Blueberry Data

33 samples through 7/12/24

County, State	No.	County, State	No.
ALACHUA, FL	126	Hardin, TX	13
PASCO, FL	39	ORANGE, FL	12
HIGHLANDS, FL	36	Pender, NC	7
DESOTO, FL	36	Bacon, GA	6
POLK, FL	29	Clinch, GA	4
LAKE, FL	21	GLADES, FL	3
HARDEE, FL	21	HILLSBOROUGH, FL	3
MARION, FL	19	LEE, FL	2
CLAY, FL	17		
Ware, GA	16		

2023-2024 PDC Blueberry Data

2024 through	7/12/2024	(33 samples)			
Row Labels	Count	Row Labels	Count	Row Labels	#
No Path Found	6	Root rot	8	Gray mold/blight	1
Insect Damage	1	Phytophthora		botrytis	
Insects		Anthracnose	7	Crown gall	1
Girdling Roots	3	Colletotrichum		Agrobacterium	
Chili thrips	1	Phyllosticta leaf spot	5	Twig blight	1
		Phyllosticta		Phomopsis	
				Mushroom root	
Insuficient sample	e 1	Stem blight	4	rot	1
		Botryosphaeria		Armillaria	
		Leaf rust	3		
		Thekospora			
		Angular leaf spot	4		
		Gloeocercospora			
				and the second	

Gloeocercospora leaf spot

- Described in 1947
- Found on the Sentinel variety in 2022

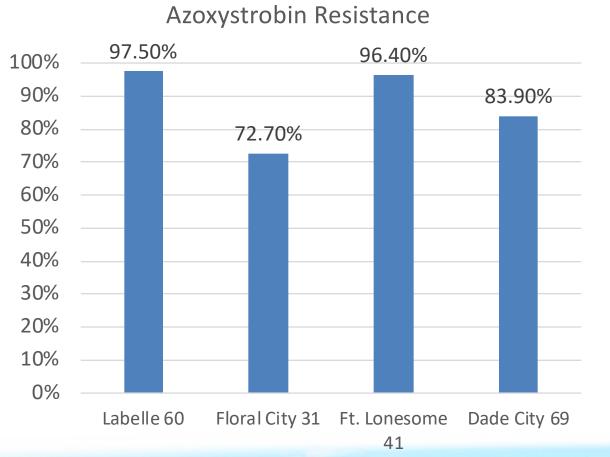
2023 Grower Survey

Top 5 Disease problems/causal agent

Disease	Pathogen	Тор5
anthracnose ripe rot	Colletotrichum gloeosporioides	28
leaf rust	Thekopsora mimimum	27
algal stem blotch	Cephaleuros virescens	17
root rot	Phytophthora cinnamomi	16
stem blight	Botryosphaeria spp.	12
bacterial wilt	Ralstonia solanacearum	9
target spot	Corynespora cassiicola	5
Alternaria fruit rot	Alternaria spp.	2
gray mold	Botrytis cinerea	1
Septoria leaf spot	Septoria albopunctata	1

"Anthracnose"

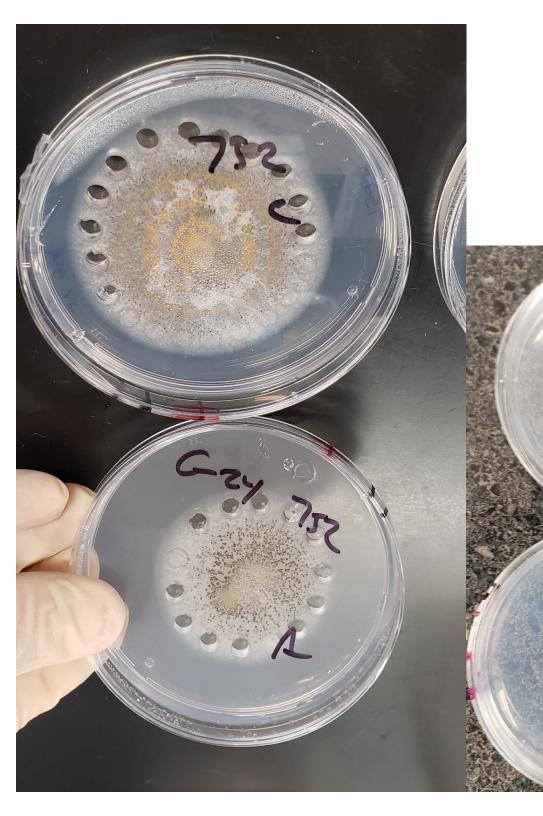
Overlapping colony morphology from berry, stem, and leaf. Fungicide resistance to our best products



Anthracnose fruit rot

Known Resistance

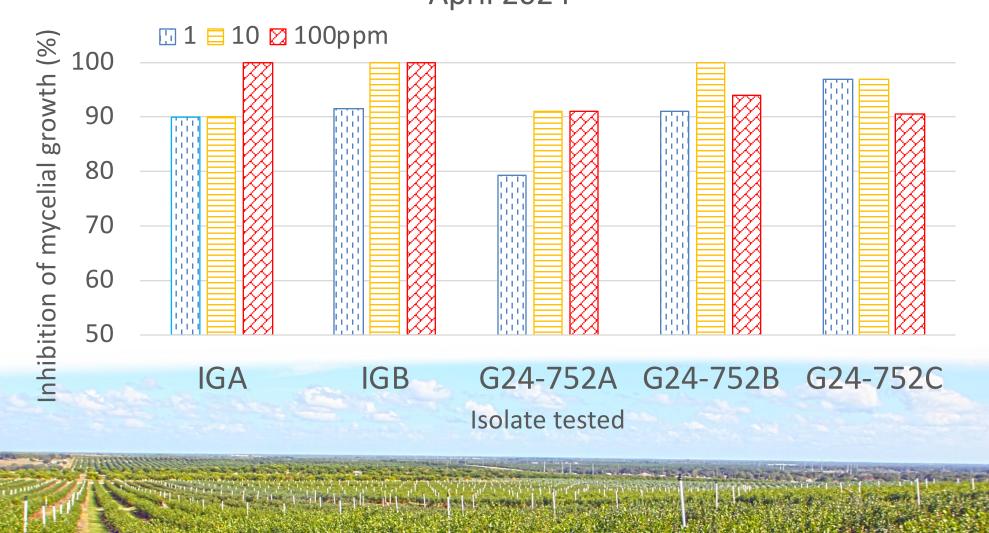
The state of the s


Gama et al 2021

- Resistance
 - Abound (azoxy)
 - Miravis (pydiflum)
 - Pristine (boscalid)
- Sensitive
 - Switch (fludioxonil)
 - Omega (fluazinam)
 - Fontelis (penthiopy
 - Aprovia (benzovindi

(lowbush only)

Resistance to fludioxonil (Switch)?



Isolate Colletotrichum

PDA

PDA 1ppm fludioxonil

Isolates were sensitive (>90% inhibition at 10ppm) Fludioxonil sensitivity of ripe rot isolates April 2024

Resistance is a major concern!

AL DAL STRUCTURE IN DURING THE OWNER

Follow label instructions, do not overuse fludioxonil.

Fungicide resistance modes

- modification of sensitive site
- exclusion of fungicide
- detoxifying the fungicide

Resistance Review

- Risk factors for fungicide resistance
 - # of site(s) of action in the targeted microbe
 - fitness of resistant mutants
 - use of repetitive or sustained fungicide treatments
 - extensive areas of use
 - population size and reproductive rate of target pathogen
 - lack of other types of fungicides or cultural controls
 - cross-resistance with existing fungicides (resistance to two or more fungicides mediated by the same genetic factor)

What is resistance?

- Fungicide no longer provides acceptable levels of disease control, because individuals in the pathogen population are not sensitive to the active ingredient
- <u>Sensitivity</u> is the quantifiable toxicity of an active ingredient on a fungus
- <u>Selection</u> is the increase in ratio of individuals in a population with an adaptive advantage to those without it
- <u>Selection pressure</u> is the magnitude of the adaptive advantage applied to a population

Contraction of the second s

How does it occur?

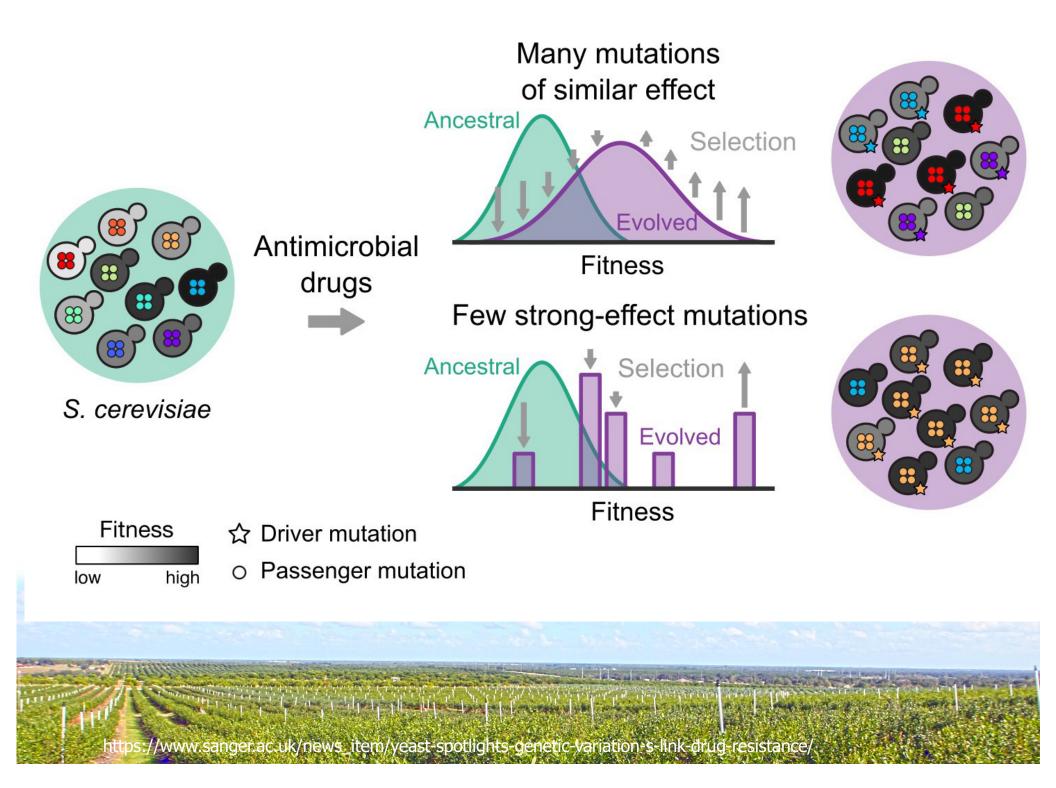
- Mutation is the ultimate source of variation in a population
 - Single site fungicides potentially affect one protein at one binding site defined by one codon
 - Mutation rates are low, but populations can be large
 - Neurospora crassa inositol requirement 8x10⁻⁸, Adenine requirement 4x10⁻⁸ per asexual spore
 - 6 out of every 100 million spores
- Resistance does not represent a pathogen's deliberate response to exposure to a fungicide

Fungicides do not cause changes in DNA sequence

PERFECT Designation of the second second

When does it occur?

- Fungi differ in their likelihood of developing resistance
 - Large populations—prolific spore producers
 - Lower mutation rates? Higher resilience to mutation?
 - Few other sources of genetic variation—transposable elements, sex, etc.
- Persistent, strong, selection pressure applied to large diverse populations are more likely to result in resistance in a given amount of time

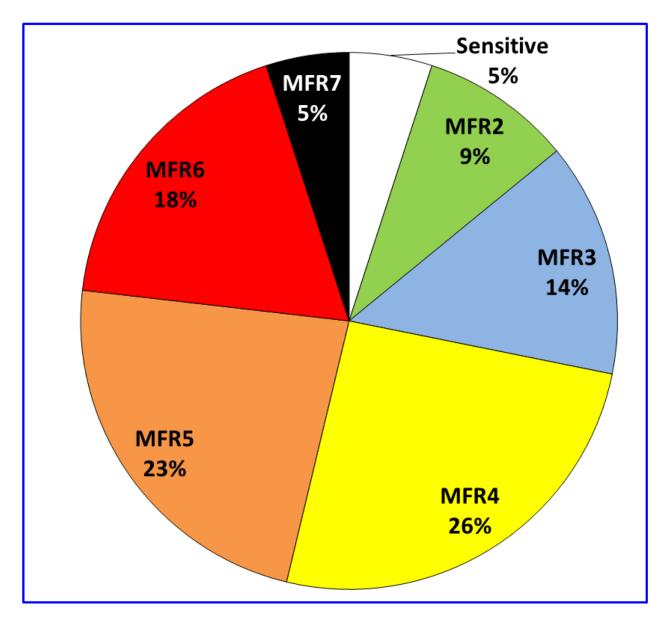

Participation and the state of the

What types of resistance?

- Monogenic
 - Qualitative sensitivity distribution likely
 - Changes in the target site of the fungicide
- Polygenic
 - Quantitative sensitivity distribution likely
 - Changes in the ability of the fungus to limit accumulation of the active ingredient in fungal cells

Print and the second of the second of the second of the second

- Reduced uptake (polyoxin D)
- Secretion (DMI)
- Detoxification
- Alternative pathways (alternative oxidase, Qol)


Multiple resistance

- Cross resistance
 - Resistance to multiple active ingredients in a MOA
- Multiple resistance
 - Resistance to multiple MOA groups
- Gray mold caused by *Botrytis*
 - Examples of isolates that are resistant to DMI, benzimadazoles, and 5 other MOA's exist!
- Ripe rot anthracnose caused by Colletotrichum

and the second state of the second state of the barrens of the barrens of the second state of the second s

Botrytis blossom blight

Management at risk because of multiple resistance

<u>Resi</u>	<u>istant to</u>
<mark>2</mark> fı	Ingicides
3	"
4	"
5	"
6	"
7	"
	2 fu 3 4 5

MFR = The same botrytisisolate may be resistant to 2,3, 4 or more fungicides,simultaneously.

From Amiri, Harmon, & Peres. Winter BGA meeting, Plant City, FL, 02/20/14

Managing resistance

- Two strategies or goals for preventing resistant populations from becoming predominate
 - Keep population sizes small
 - Reduce selection pressure
- Recommendations
 - Employ nonchemical options of disease control
 - Apply fungicides preventatively
 - Use multi-site compounds as the first line of defense

PERSONAL PARTICIPACIES AND REPORT OF A STATE OF A DESCRIPTION OF A DESCRIPANTA DESCRIPTION OF A DESCRIPTION

- Limit the use of site-specific actives
- Use multi-site tank mix partners
- Rotate or tank mix site-specific classes
- Use the recommended rate

FBGA Research Priorities

- Committee of FBGA Board Members
 - Charge is to formalize a list of prioritized research needs for the Florida Blueberry Industry
 - A draft list of topics has been put together with Board of Directors' input
 - We'd like to get your input!
 - What are the most important research needs for your farm?

FBGA Research Priorities

- Breeding-Cultivar development, improvement
 - Increase yield, firmness, pest and disease resistance, flavor, machine harvestability
- Entomology-Control measure development for:
 - Chili thrips, mites, gall midge, diaprepes
 - Rankings of varieties for tolerance to pests
 - Spray timing, rotations, rates, economic returns
- Nematology-investigate replant disorder
 - Survey, fumigation work
- Weeds-Additional control options for:
 - Sedge, perennial grasses, QuinStar safety for FL
 - Plant safety, specifically when carrying fruit
 - Evaluate combinations, reduce PHI's for glufosinate, organic options
- Pathology-Control options for:
 - Rust, root rot, stem blight, anthracnose, bacterial wilt
 - Refine effectiveness ratings, economic return studies
 - Overhead vs drip irrigation impacts on disease
 - Methods to limit spread of pathogns to limit risk, sanitation efforts
 - Root girdling, sucker removal, stem blight

FBGA Research Priorities

Continued

- Horticultural practices-
 - Variety specific pruning practice effects on yield for machine harvesting
 - Renewal pruning practices vs renovation, economic thresholds for evergreen and deciduous
 - Plant spacing and density multi-year multi variety research
 - Precocious varieties recommendations to maximize yr1 yield, crop insurance implications
 - Phosphorous and other nutrient management impact on fruit quality and yield
 - Nitrogen needs for crop production leading to and through harvest, crop load impacts, slow release tech
 - Fruit drop, red cap, pollination, fert impacts on fruit abortion (Sentinel, Meadowlark, Optimus)
 - Mechanization, fruit toughening practices, new harvest tech
 - Pine bark alternatives, coco,
 - Low temp impact and damage studies at different floral and fruit development stages (water conservation)
- Pollination
 - Flower visitation studies with yield prediction by AI to promote market stability
 - Cross pollination partners, interplant density requirements

Any Questions? Philip Harmon, University of Florida pfharmon@ufl.edu

